On Korselt’s criterion for Carmichael numbers

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carmichael numbers and pseudoprimes

We now establish a pleasantly simple description of Carmichael numbers, due to Korselt. First, we need the following notion. Let a and p be coprime (usually, p will be prime, but this is not essential). The order of a modulo p, denoted by ordp(a), is the smallest positive integer m such that a ≡ 1 mod p. Recall [NT4.5]: If ordp(a) = m and r is any integer such that a ≡ 1 mod p, then r is a mult...

متن کامل

Higher-order Carmichael numbers

We define a Carmichael number of order m to be a composite integer n such that nth-power raising defines an endomorphism of every Z/nZalgebra that can be generated as a Z/nZ-module by m elements. We give a simple criterion to determine whether a number is a Carmichael number of order m, and we give a heuristic argument (based on an argument of Erdős for the usual Carmichael numbers) that indica...

متن کامل

Sierpiński and Carmichael numbers

We establish several related results on Carmichael, Sierpiński and Riesel numbers. First, we prove that almost all odd natural numbers k have the property that 2nk + 1 is not a Carmichael number for any n ∈ N; this implies the existence of a set K of positive lower density such that for any k ∈ K the number 2nk + 1 is neither prime nor Carmichael for every n ∈ N. Next, using a recent result of ...

متن کامل

On Fibonacci numbers which are elliptic Carmichael

Here, we show that if E is a CM elliptic curve with CM field different from Q( √ −1), then the set of n for which the nth Fibonacci number Fn is elliptic Carmichael for E is of asymptotic density zero.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Elemente der Mathematik

سال: 2013

ISSN: 0013-6018

DOI: 10.4171/em/227